
Complexity is the Only Constant:
Trends in Computing and Their Relevance to

Model Driven Engineering

Juergen Dingel

School of Computing
Queen’s University

Kingston, Ontario, Canada
dingel@cs.queensu.ca

Abstract. Despite ever increasing computational power, the history of
computing is characterized also by a constant battle with complexity. We
will briefly review these trends and argue that, due to its focus on ab-
straction, automation, and analysis, the modeling community is ideally
positioned to facilitate the development of future computing systems.
More concretely, a few, select, technological and societal trends and de-
velopments will be discussed together with the research opportunities
they present to researchers interested in modeling.

1 Introduction

The development of computing is remarkable in many ways, and perhaps most
of all in its progress and impact. However, due to the economic significance of
computing and the pace of societal and technological change, we are constantly
presented with new questions, challenges, and problems, giving us little time to
reflect on how far we have come. Also, computing has become such a large and
fragmented field that it is impossible to keep abreast all research developments.

This paper wants to briefly review some select past and present develop-
ments. Its main goal is to inform, stimulate, and inspire, not to convince. It
will attempt to do so in a somewhat eclectic, anecdotal manner without claims
of comprehensiveness, mostly driven by the author’s interest, but with ample
references to allow interested readers to dig deeper.

2 Complexity

“Complexity, I would assert, is the biggest factor involved in
anything having to do with the software field.”

Robert L. Glass [23]

In general, complex systems are characterized by a large number of entities,
components or parts, many of which are highly interdependent and tightly cou-
pled such that their combination creates synergistic, emergent, and non-linear

dingel@cs.queensu.ca

Lines of code (approx.)
(in million)

Operating Systems
Windows NT 3.1 (1993) 0.5

Windows 95 11
Windows 2000 29

Windows XP (2001) 35
Windows Vista (2007) 50

Windows 7 40
Mac OS X 85

Android OS 12

Automobiles
1981 0.05
2005 10

2015 (high end) 100
Miscellaneous

Pacemaker 0.1
Mars Curiosity Rover 5

Firefox 10
Intuit Quickbook 10

Boeing 787 14
F-35 fighter jet 24

Large Hadron Collider 50
Facebook 60

Google (gmail, maps, etc) 2,000

Fig. 1. Approximate size of software in various products [7,48]

behaviour [29]. One of the prime examples of a complex system is the human
brain consisting, approximately, of 1011 neurons connected by 1015 synapses [11].

Figure 1 shows the size of software in different kinds of products. Noteworthy
here are not only the absolute numbers, but also the rate of increase. Automo-
tive software is a good example here. Just over 40 years ago, cars were devoid of
software. In 1977, the General Motors Oldsmobile Tornado pioneered the first
production automotive microcomputer ECU: a single-function controller used
for electronic spark timing. By 1981, General Motors was using microprocessor-
based engine controls executing about 50,000 lines of code across its entire do-
mestic passenger car production. Since then, the size, significance, and develop-
ment costs of automotive software has grown to staggering levels: Modern cars
can be shipped with as much as 1GB of software encompassing more than 100
million lines of code; experts estimate that more than 80% of automotive inno-
vations will be driven by electronics and 90% thereof by software, and that the
cost of software and electronics can reach 40% of the cost of a car [25].

The history of avionics software tells a similar story: Between 1965 and 1995,
the amount of software in civil aircraft has doubled every two years [14]. If growth

continues at this pace, experts believe that limits of affordability will soon be
reached [79].

Lines of code is a doubtful measure of complexity1. Nonetheless, it appears
fair to say the modern software is one of the most complex man-made artifacts.

2.1 Why has complexity increased so much?

An enabler necessary for building and running modern software certainly is mod-
ern hardware. Today’s software could not run on yesterday’s hardware. The
hardware industry has produced staggering advances in chip design and man-
ufacturing which have managed to deliver exponentially increasing computing
power at exponentially decreasing costs. Compared to the Apollo 11 Guidance
Computer used 19692 a standard smart phone from 2015 (e.g., iPhone 6) has
several tens of million of times the computational power (in terms of instructions
per second)3. In 1985, an 2011 iPad2 would have rivaled a four-processor version
of the Cray 2 supercomputer in performance, and in 1994, it still would have
made the list of world’s fastest supercomputers [45]. According to [47], the price
of a megabyte of memory dropped from US$411,041,792 in 1957 to US$0.0037
in December 2015 — a factor of over 100 billion! The width of each conducting
line in a circuit (approx. 15 nanometers) is approaching the width of an atom
(approx. 0.1 to 0.5 nanometers).

But, it is not just technology that is getting more complex, life in general
does, too. According to anthropologist and historian Josef Tainter, “the history
of cultural complexity is the history of human problem solving” [73]. Societies get
more complex because “complexity is a problem solving strategy that emerges
under conditions of compelling need or perceived benefit”. Complexity allows
us to solve problems (e.g., food or energy distribution) or enjoy some benefit.
Ideally, this benefit is greater than the costs of creating and sustaining the com-
plexity introduced by the solution.

2.2 Consequences of complexity

On the positive side, complex systems are capable of impressive feats. AlphaGo,
the Go playing system that in March 2016 became the first program to beat
a professional human Go player without handicaps on a full-sized board in a
five-game match, was said by experts to be capable of developing its own moves:
“All but the very best Go players craft their style by imitating top players.
AlphaGo seems to have totally original moves it creates itself” [5], providing a
great example of — seemingly or real — emergent, synergistic behaviour.

1 So many alternative ones have been proposed [61] that even the study of complexity
appears complex

2 A web-based simulator can be found at http://svtsim.com/moonjs/agc.html
3 https://www.quora.com/How-much-more-computing-power-does-an-iPhone-

6-have-than-Apollo-11-What-is-another-modern-object-I-can-relate-the-same-
computing-power-to

On the negative side, complexity increases risk of failure. Data on the failures
of software or software development are hard to come by; according to the US
National Institute of Standards and Technology, the cost of software errors in
the US in 2001 was US$ 60 billion [63] and in 2012 the worldwide cost of IT
failure has been estimated to be $3 trillion4.

A recent example illustrates how subtle bugs can be and how difficult it is to
build software systems correctly: Chord is a protocol and algorithm for a peer-
to-peer distributed hash table first presented in 2001 [72]. The work identified
relevant properties and provided informal proofs for them in a technical report.
Chord has been implemented many times5 and went on to win the SIGCOMM
Test-of-Time Award in 2011. The original paper currently has over 12,000 cita-
tions on Google scholar and is listed by CiteSeer as the 9th most cited Computer
Science article. In 2012, it was shown that the protocol was not correct [82].

2.3 How to deal with complexity

Computer science curricula teach students a combination of techniques to deal
with complexity, the most prominent of which are decomposition, abstraction,
reuse, automation, and analysis. Of these, abstraction, automation, and analysis
lie at the heart of MDE. These principles have served us amazingly well. Exam-
ples include the development of programming languages in general, and Peter
Denning’s ground-breaking work on virtual memory in particular [15]. But, e.g.,
‘The Law of Leaky Abstractions’6, the ‘Automation Paradox’ [22], and the Ar-
iane 5 accident in 1996 [1] have also taught us that even these techniques must
be used with care.

3 Developments and opportunities

“I have no doubt that the auto industry will change more in
the next five–10 years than it has in the last 50”

Mary Barra, GM Chairman and CEO, January 2016 [24]

“Only 19% of [175] interviewed auto executives describe their
organizations as prepared for challenges on the way to 2025”

B. Stanley, K. Gyimesi, IBM IBV, January 2015 [71]

Making predictions in the presence of exponential change is very difficult7.
For instance, when asked to imagine life in the year 2000, 19th century French
artists came up with robotic barbers, machines that read books to school chil-
dren, and radium-based fireplaces8; when the concept of a personal computer

4 http://www.zdnet.com/article/worldwide-cost-of-it-failure-revisited-3-trillion
5 At least 8 implementations are listed at https://github.com/sit/dht/wiki/faq
6 http://www.joelonsoftware.com/articles/LeakyAbstractions.html
7 http://uday.io/2015/10/15/predicting-the-future-and-exponential-growth
8 http://singularityhub.com/2012/10/15/19th-century-french-artists-predicted-the-

world-of-the-future-in-this-series-of-postcards

was first discussed at IBM, a senior executive famously questioned its value9.
However, predicting further accelerating levels of change appears to be a safe
bet. Increasing amounts of software are very likely to come with that, meaning
there should be lots of things to do for software researchers.

The following list is highly selective and meant to complement more compre-
hensive treatments such as [65]. Also, we will focus most on technology; however,
as pointed out in [65], more technology is not always the answer.

3.1 Semantics engineering

Capturing the formal semantics of general purpose programming languages has
been a topic of research for a long time, but the richness of these languages
present challenges that limit a more immediate, practical application of the re-
sults contributing to a widespread belief that formal semantics are for theoreti-
cians only. However, the recent interest in Domain Specific Languages (DSLs)
appears to present new opportunities to leverage formal semantics. Compared to
General Purpose Languages (GPLs), a DSL typically consists of a smaller num-
ber of carefully selected features. Often, semantically difficult GPL constructs
such as objects, pointers, iteration, or recursion can be avoided; expressiveness
is lost, but tractability is gained.

The literature contains some examples showing how this increased tractabil-
ity can be leveraged to facilitate formal reasoning. For instance, automatic veri-
fiers have been built for DSLs for hardware description [13], train signaling [18],
graph-based model transformation [66], and software build systems [10].

However, the improved tractability of DSLs might also greatly facilitate the
automatic generation of supporting tooling. Looking at how widely used tech-
niques to describe the syntax of a language have become to generate syntax
processing tools, the vision is clear: Use descriptions of the semantics of a lan-
guage to facilitate the construction of semantics-aware tools for the execution
and analysis of that language.

An inspiring example This idea has already been explored in the context
of programming languages [52,6,77,28]) and modeling languages [19,43,53,83]
to, e.g., implement customizable interpreters, symbolic execution engines, and
model checkers. However, the work in [40], in which abstract interpreters for a
language are generated automatically from a description of its formal semantics,
shows that more is possible. Given a description of the operational semantics
of a machine-language instruction set such as x86/IA32, ARM, or SPARC in a
domain-specific language called TSL, and a description of how the base types
and operators in TSL are to be interpreted “abstractly” in an abstract semantic
domain, the TSL tool automatically creates an implementation of an abstract
interpreter for the instruction set:

TSL : concrete semantics× abstract domain −→ abstract semantics

9 http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/personalcomputer

The abstract interpreter can then be used by different analysis engines (e.g., for
finding a fixed-point of a set of dataflow equations using the classical worklist
algorithm, or for performing symbolic execution) to obtain an analyzer that is
easily retargetable to different languages. The tool offers an impressive amount of
generality by supporting different instruction sets and different analyses. It has
been used to build analyzers for the IA32 instruction set that perform value/set
analysis, definition/use analysis, model checking, and Botnet extraction with a
precision at least as high as manually created analyzers.

Lowering barriers, increasing benefit Recent formalizations of different
industrial-scale artifacts including operating system kernels [35], compilers [38],
and programming languages including C [17], JavaScript [57] and Java [4] provide
some evidence that large-scale formalizations are becoming increasingly feasible.
Efforts are underway to make the expression, analysis, and reuse of descriptions
of semantics more scalable, effective, and mainstream [21,62,54]. Paired with
the increasing maturity and adoption of language workbenches such as Xtext10,
this work may allow substantial progress on the road towards the automatic
generation of semantics-aware tools such as interpreters, static analyzers, and
compilers. Descriptions of semantics might one day be as common and useful as
descriptions of syntax are today.

3.2 Synthesis

The topic of synthesis has been receiving a lot of attention recently. For most
of these efforts, ‘synthesis’ refers to the process of automatically generating exe-
cutable code from information given in some higher level form: Examples include
the generation of code that manipulates many different artifacts (e.g., bitvec-
tors [70], concurrent data structures [69], database queries [9], data reprenta-
tions [68], or spreadsheets [26]), gives feedback to students for programming
assignments [68], or implements an optimizing compiler [8]. Some of these exam-
ples use a GPL, some use a DSL. The synthesis itself is implemented either using
constraint solving or machine learning. Different proposals on how to best inte-
grate synthesis into programming languages have been made and have targeted
GPLs such as Java [49,31] and DSLs [75].

Given that abstraction, automation and analysis are central to MDE, syn-
thesis certainly also is of interest to the modeling community and the work on
synthesis and its applications should be followed closely. In [74,75], the idea of
“solver-aided DSLs” is introduced. The paper presents a framework in which
such DSLs can be created and illustrates its use with a DSL for example-based
web scraping in which the solver is used to generate an XPath expression that
retrieves the desired data.

MDE features a range of activities and situations which might potentially
benefit from a little help from a solver capable of finding solutions to constraints.
Could the idea of synthesis and the use of solvers facilitate, e.g.,

10 https://eclipse.org/Xtext

– the development of models via extraction or autocompletion,
– the support for partial models with incomplete or uncertain information,
– the analysis of models,
– the refinement of models via, e.g., the generation of substate machines from

interface specifications,
– the generation of correct, efficient code from models,
– the generation of different views from a model?

How could synthesis be leveraged in language workbenches that generate sup-
porting tools such as analyzers and code generators, or in model transformation
languages and engines that support different transformation intents [44]?

Some attempts to leverage synthesis for, e.g., model creation [36], transfor-
mation authoring [2], design space exploration [27] already exist, but the topic
hardly seems exhausted. Indeed, some of the technical issues Selic mentions
in [65] might be mitigated using synthesis including dealing with abstract, in-
complete models, model transformation, and model validation.

3.3 Reconciling formal analysis and evolution

There is a fundamental conflict between analysis and evolution: As soon as the
model evolves (changes), any analysis results obtained on the original version
may be invalidated and the analysis may have to be rerun. Unfortunately, both
seem unavoidable not just in the context of MDE, but software engineering in
general.

Most analyses require the creation of supporting artifacts that represent
analysis-relevant information about the model. For instance, software reverse
engineering tools collect relevant information about the code in a so-called fact
repository typically containing a collection of tuples encoding graphs [34]; most
static analysis tools require some kind of dependence graph, and test case gen-
eration tools often rely on symbolic execution trees.

When the cost of the analysis rises, the motivation to avoid a complete re-
analysis after a change and to leverage information about the nature of the
change to optimize the analysis increases as well. In general, aspects of this
topic are handled in the literature on impact analysis [39]; however, the analy-
ses considered typically are either manual (comprehension, debugging) or rather
narrow (regression testing, software measurement via metrics), and do not con-
sider, e.g., static analyses or analyses based on formal methods.

Two approaches Assuming the analysis requires supporting artifacts, there
are, in principle, at least two ways of reconciling analysis and evolution [33]:

1. Artifact-oriented (Figure 2): The goal here is to update the supporting
artifact A1 as efficiently as possible, but in such a way that it becomes fully
reflective of the information in the changed program. To this end, the impact of
the change ∆ on the artifact original artifact A1 is determined, and the parts
of the artifact possibly affected are recomputed, while leaving parts known to
be unaffected unchanged. Then, the updated artifact A2 can be used as before

M1

M2

A1 R1

extract analyze

∆

A2 R2

analyze

change

Fig. 2. Artifact-oriented approach to reconcile analysis and evolution. Mi, Ai, and Ri

denote, respectively, a model, the artifact extracted from the model to support the
analysis, and the analysis result

to perform all analyses it is meant to support. For instance, for analyses based
on dependence graphs such as slicing or impact analysis, the parts of the graph
affected by the change are updated and the result is used to recompute the result.
Similarly, for a dead code analysis (or test case generation) using a symbolic
execution tree (SET), affected parts of the tree would be updated to produce a
tree corresponding to the changed program. In this approach, the savings come
from avoiding the reconstruction of parts of the supporting artifact A2.

2. Analysis-oriented (Figure 3): Here, the focus is on updating the result of
the analysis as efficiently as possible, rather than the supporting artifact. To
this end, the impact of the change ∆ on the analysis result is determined, and
the parts of the analysis that may lead to a different result due to the change
are redone, ignoring any parts known to produce the same result. For instance,
when impact analysis is used during regression testing, only tests for executions
that were introduced by the change are run; tests covering unaffected executions
are ignored [60]. In this approach, the focus is on reestablishing the analysis
result R2 as some combination R2 = op(∆,R1, R

′
2) of the previous result R1 and

the partial result R′
2. E.g., an analysis-oriented optimization of the dead code

analysis mentioned above (or test case generation) would use the most efficient
means to determine dead code in (or test cases for) the affected parts and the
construction of the full SET for the changed program may not be necessary for
that; in this case, R1 would be the dead code in (or test cases for) M1 and the
partial result R′

2 would be the dead code in (test cases for) the parts of the
model introduced by the change; the operation op(∆,R1, R

′
2) would return the

union of R′
2 and the dead code (test cases) in R1 not impacted by the change.

In this case, the savings come from avoiding unnecessary parts of the analysis.

Comparing the two approaches, we see an interesting tradeoff: The first ap-
proach does not speed up the analysis itself (only the update of the supporting
artifact). However, it results in a complete supporting artifact (e.g., dependence
graphs, SET) that can then be used for whatever analyses it supports (e.g., dif-
ferent static analyses for dependence graphs, and, test case generation, dead code
analysis for SETs). Moreover, the result of the analysis of the changed model
does not rely on the result of the analysis of the original program at all. The sec-
ond approach speeds up the analysis itself, but since it focusses on the changed

M1

M2

A1 R1

extract analyze

∆

A’2 R’2

change

with R2 = op(∆, R1, R’2)

Fig. 3. Analysis-oriented approach to reconcile analysis and evolution. The analysis
result R2 for M2 is obtained by combining the result for M1 with the partial result R′

2

parts, it is partial only. E.g., the updated program can only be concluded to be
free of dead code, if the second and the first analysis say so.

In sum, the second approach is more restricted compared to the first, but
might well hold additional optimization potential. Recent research on program
analysis using formal techniques has begun to explore these possibilities, and
analysis-oriented approaches to optimize model checking [81] and symbolic ex-
ecution [58] have been developed. Inspired by these proposals, we have devel-
oped prototypes that use both approaches to optimize the symbolic execution
of Rhapsody statemachines [33]. Results indicate that both approaches are com-
plementary and effective in different situations.

3.4 Open Science

In 2010, two Harvard economists published a paper entitled “Growth in a Time
of Debt” in a non-peer reviewed journal which provided support for the argument
that excessive debt is bad for growth. The paper was used by many policy makers
to back up their calls for fiscal austerity. However, in 2013, the paper was shown
to have used flawed methodology and to not support the authors’ conclusions11.

Reproducibility Examples of research producing doubtful results due to un-
intended or even intended flaws in the data or methodology have been going
through the media recently and many disciplines have begun to investigate
the reproducibility of their research results. For instance, a study in economics
showed that 78% of the 162 replication studies conducted “disconfirm a major
finding from the original study” [16]. A study focusing on research in Computer
Systems [12], examined 601 papers from eight ACM conferences and five jour-
nals: of the papers with results backed by code, the study authors were able to
build the system in less than 30 minutes only 32% of the time; in 54% of cases
the study authors failed to build the code, but the paper authors said that the
code does build with reasonable effort.

The U.S. President steps in However, it has been pointed out in prominent
places that in many disciplines these days reproducibility means the availability

11 A discussion of the paper and the controversy it caused can be found at
https://en.wikipedia.org/wiki/Growth in a Time of Debt

of programs and data [30,64,50]. In other words, since software, programming,
and the use and manipulation of data plays such a central role in so many dis-
ciplines, some of the problems with reproducibility in other disciplines are due
to limitations in programming, software, and the use and manipulation of data,
that is, they are due to problems that the computing community is at least par-
tially responsible for and should put on its research agenda12. About a year ago,
the world’s most powerful man has done exactly that with an executive order to
create a “National Strategic Computing Initiative” which includes accessibility
and workflow capture as central objectives [56].

A good start: encouraging artifact submission The research community
has begun to adjust with, e.g., no less than four events devoted to reproducibility
at the 2015 Conference for High Performance Computing, Networking, Storage
and Analysis (SC’15)13, and Eclipse’s Science Working Group announcing spe-
cific initiatives (Eclipse Integrated Computational Environment and Data Anal-
ysis Workbench). However, more should be done and promoting the value of
artifact submission at workshops, conferences, and journal appears to be a good
place to start. According to [12], 19 Computer Science conferences have partici-
pated in an artifact submission and evaluation process between 2011 and 2016,
including PLDI’15, OOPSLA’15, ECOOP’15, and POPL’16, but more need to
join. The availability of the artifacts that research is based and their integration
into the scientific evaluation process should be the norm, not the exception.

3.5 Provenance

A topic closely related to open science and reproducibility is provenance. In
general, data provenance refers to the description of the origins of a piece of
data and the process by which it was created or obtained with the goal to allow
assessments of quality, reliability, or trustworthiness. It has traditionally been
studied in the context of databases, but has also been used for data found on
the web or data used in scientific experiments. Domains of application include

– science, to make data and experimental results more trustworthy and exper-
iments more reproducible,

– business, to demonstrate ownership, responsibility, or regulatory compliance
and facilitate auditing processes, and

– software development, to aid certification and establish adherence to licensing
rules.

OPM and PROV: metamodels and standards for provenance There
are tools specifically devoted to the collection and representation of provenance

12 Computers are even said to have “broken science”,
https://www.eclipsecon.org/na2016/session/how-computers-have-broken-science-
and-how-we-can-fix-it

13 http://sc15.sueprcomputing.org

data such as Karma14 but also workflow engines supporting provenance such as
Kepler15. Many of these tools support the Open Provenance Model (OPM), a
data model (i.e., metamodel) for provenance information [51] based on directed,
edge-labeled, hierarchical graphs with three kinds of nodes representing things
(Artifact, Agent, and Process) and five kinds of edges representing causal rela-
tionships (used, wasGeneratedBy, wasControlledBy, wasTriggeredBy, and was-
DerivedFrom). OPM graphs are subject to well-formedness constraints, can con-
tain time information, and have inference rules (allowing, e.g., the inclusion of
derived information via transitive edges) and operations (for, e.g., union, inter-
section, merge, renaming, refinement and completion) associated with them. A
formal semantics of OPM graphs published recently views them as temporal the-
ories on the temporal events represented in the graph [37], but does not account
for Agents. OPM has been a major influence in the design of the PROV family
of documents by the World Wide Web Consortium (W3C) [78] which not only
defines a data model, but also corresponding serializations and other supporting
definitions to enable the interoperable interchange of provenance information in
heterogeneous environments such as the Web.

Open-ended opportunities There appears to be a lot of opportunity for re-
searchers with background in graph transformation, formal methods, or modeling
to advance the state-of-the-art in provenance. Many established topics (e.g., for-
mal semantics, constraint solving, traceability, querying, language engineering
for graphical DSMLs, and model management), but also emerging topics (e.g.,
the use of models and modeling to support inspection, certification and com-
pliance checking [20,46,55] and data aggregation and visualization [76,42,48,41])
appear potentially relevant. Moreover, no approaches have been found to build
models that allow the quantification of the quality or trustworthiness of data. In
case of producer/consumer relationships, service level agreements guaranteeing
data with a certain level of quality might also be of interest.

3.6 Open source modeling tools

The need to improve MDE tooling has been expressed before [65,80,32]. At the
same time, significant efforts to develop industrial-strength open source mod-
eling tools and communities that support and sustain them are currently be-
ing made. Sample tools include AutoFocus16, xtUML17, Papyrus18[3], and Pa-
pyrusRT19[59].

The development and availability of complete, industrial-strength open source
MDE tools is a radical shift from past practices and presents both exciting oppor-
tunities and substantial challenges for everybody interested in MDE, regardless

14 http://d2i.indiana.edu/provenance karma
15 https://kepler-project.org
16 http://www.fortiss.org/en/about-us/alle-news/autofocus-3
17 https://xtuml.org
18 https://eclipse.org/papyrus
19 https://www.eclipse.org/papyrus-rt

of whether they use the tools for industrial development, research, or education.
Due to the importance of tooling to the success of MDE, this shift has the po-
tential to provide a much-needed stimulus for major advances in its adoption,
development, and dissemination.

4 Conclusion

“We can only see a short distance ahead, but we
can see plenty there that needs to be done.”

Alan Turing

As we continue to entrust more and more complex functions and capabilities
to software, our ability to build this software reliably and effectively should
increase as well. Much more work is needed to make this happen and this paper
has suggested some starting points.

The fragmentation that plagues many research areas is harmful. Any scientific
community should keep an open mind and remain willing to learn from others
about existing and new problems and potentially new ways to solve them [67].

Acknowledgment

This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC), and by the Ontario Ministry of Research and
Innovation (MRI).

References

1. Ariane 5 flight 501 failure, report by the inquiry board. http://esamultimedia.

esa.int/docs/esa-x-1819eng.pdf, 1996.
2. I. Baki and H. Sahraoui. Multi-step learning and adaptive search for learning

complex model transformations from examples. ACM Transactions on Software
Engineering and Methodology, 2016. In print.

3. R. Barrett and F. Bordeleau. 5 years of ‘Papyrusing’ — migrating industrial devel-
opment from a proprietary commercial tool to Papyrus (invited presentation). In
Workshop on Open Source Software for Model Driven Engineering (OSS4MDE’15),
pages 3–12, 2015.

4. D. Bogdănaş and G. Roşu. K-Java: A Complete Semantics of Java. In ACM SIG-
PLAN/SIGACT Symposium on Principles of Programming Languages (POPL’15),
pages 445–456. ACM, January 2015.

5. S. Borowiec and T. Lien. AlphaGo beats human Go champ in milestone for artificial
intelligence. Los Angeles Times, March 12, 2016.

6. P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. Centaur: the system. In ACM SIGSoft/SIGPlan Software Engineering Sym-
posium on Practical Software Development Environments (SDE’87), 1987.

7. R.N. Charette. Why software fails. IEEE Spectrum, 42(9):42–49, 2005.

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

8. A. Cheung, S. Kamil, and A. Solar-Lezama. Bridging the gap between general-
purpose and domain-specific compilers with synthesis. In Summit oN Advances in
Programming Languages (SNAPL’15), 2015.

9. A. Cheung, A. Solar-Lezama, and S. Madden. Optimizing database-backed appli-
cations with query synthesis. ACM SIGPLAN Notices, 48(6):3–14, 2013.

10. M. Christakis, R.M. Leino, and W. Schulte. Formalizing and verifying a modern
build language. In International Symposium on Formal Methods (FM’14), 2014.

11. E.H. Chudler. Neuroscience for kids. https://faculty.washington.edu/

chudler/what.html.
12. C. Collberg and T.A. Proebsting. Repeatability in computer systems research.

Communications of the ACM, Vol. 59 No. 3, Pages 62-69, 59(3), 2016.
13. B. Cook, J. Launchbury, and J. Matthews. Specifying superscalar microprocessors

in Hawk. In Workshop on Formal Techniques for Hardware and Hardware-like
Systems, 1998.

14. J.P. Potocki de Montalk. Computer software in civil aircraft. Cockpit/Avionics
Engineering, 17(1):17–23, 1993.

15. P.J. Denning. Virtual memory. ACM Computing Surveys, 2(3), 1970.
16. M. Duvendack, R.W. Palmer-Jones, and W.R. Reed. Replications in economics:

A progress report. Economics in Practice, 12(2), 2015.
17. C. Ellison and G. Roşu. An executable formal semantics of C with applications. In

ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages
(POPL12), pages 533–544, 2012.

18. J. Endresen, E. Carlson, T. Moen, K.-J. Alme, Ø. Haugen, G.K. Olsen, and
A. Svendsen. Train control language – teaching computers interlocking. In Com-
puters in Railways XI. WIT Press, 2008.

19. G. Engels, J.H. Hausmann, R. Heckel, and S. Sauer. Dynamic meta-modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In International Conference on the Unified Modeling Language (UML’00), volume
1939 of LNCS, pages 323–337. Springer, 2000.

20. D. Falessi, M. Sabetzadeh, L. Briand, E. Turella, T. Coq, and R.K Panesar-
Walawege. Planning for safety standards compliance: A model-based tool-
supported approach. IEEE Software, 29(3):64–70, 2012.

21. M. Felleisen, R.B. Findler, and M. Flatt. Semantics Engineering with PLT Redex.
MIT Press, 2009.

22. D.E. Geer. Children of the magenta. IEEE Computer, September/October 2015.
23. R.L. Glass. Sorting out software complexity. Communications of the ACM,

45(11):19–21, 2002.
24. GM. GM chairman and CEO addresses CES. https://www.gm.com/mol/

m-2016-Jan-boltev-0106-barra-ces.html, Jan 6, 2016.
25. K. Grimm. Software technology in an automotive company — major challenges.

In International Conference on Software Engineering (ICSE’03), 2003.
26. S. Gulwani, W. Harris, and R. Singh. Spreadsheet data manipulation using exam-

ples. Communications of the ACM, 55:97–105, 2012.
27. M. Hendriks, T. Basten, J. Verriet, M. Brassé, and L. Somers. A blueprint for

system-level performance modeling of software-intensive embedded systems. Soft-
ware Tools for Technology Transfer, 18:21–40, 2016.

28. P.R. Henriques, M.J.V. Pereira, M. Mernik, M. Lenic, J. Gray, and H. Wu. Auto-
matic generation of language-based tools using the LISA system. IEE Proceedings
— Software, 152:54–69, 2005.

29. T. Homer-Dixon. The Ingenuity Gap. Vintage Canada, 2001.

https://faculty.washington.edu/chudler/what.html
https://faculty.washington.edu/chudler/what.html
https://www.gm.com/mol/m-2016-Jan-boltev-0106-barra-ces.html
https://www.gm.com/mol/m-2016-Jan-boltev-0106-barra-ces.html

30. D.C. Ince, L. Hatton, and J. Graham-Cumming. The case for open computer
programs. Nature, 482:485–488, 2012.

31. J. Jeon, X. Qiu, J.S. Foster, and A. Solar-Lezama. Jsketch: sketching for Java. In
Joint Meeting of the European Software Engineering Conference and the ACM SIG-
SOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’15),
2015.

32. N. Kahani, M. Bagherzadeh, J. Dingel, and J.R. Cordy. The problems with Eclipse
modeling tools: A topic analysis of Eclipse forums. Submitted, April 2016.

33. A. Khalil and J. Dingel. Incremental symbolic execution of evolving state machines.
In ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems (MODELS’15), 2015.

34. H.M. Kienle and H.A. Mueller. Rigi — an environment for software reverse en-
gineering, exploration, visualization, and redocumentation. Science of Computer
Programming, 75:247–263, April 2010.

35. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood.
Formal verification of an OS kernel. In ACM SIGOPS Symposium on Operating
Systems Principles (SOSP’09), pages 207–220. ACM, 2009.

36. A.S. Koksal, Y. Pu, S. Srivastava, R. Bodik, N. Piterman, and J. Fisher. Synthesis
of biological models from mutation experiments. In ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages (POPL’13), 2013.

37. N. Kwasnikowska, L. Moreau, and J. Van den Bussche. A formal account of the
Open Provenance Model. ACM Transactions on the Web, 9, May 2015.

38. X. Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7), July 2009.

39. B. Li, X. Sun, H. Leung, and S. Zhang. A survey of code-based change impact
analysis techniques. Software Testing, Verification, and Reliability, 2012.

40. J. Lim and Th. Reps. TSL: A system for generating abstract interpreters and its
application to machine-code analysis. ACM Trans. Program. Lang. Syst., 35(1):4:1–
4:59, April 2013.

41. M. Lima. Visual complexity website. http://www.visualcomplexity.com/vc.
42. M. Lima. The Book of Trees: Visualizing Branches of Knowledge Hardcover.

Princeton Architectural Press, 2014.
43. Y. Lu, J.M. Atlee, N.A. Day, and J. Niu. Mapping template semantics to

SMV. In IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE’04), 2004.

44. L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G.M.K. Selim, E. Syriani,
and M. Wimmer. Model transformation intents and their properties. Software and
Systems Modeling, pages 1–38, 2014.

45. J. Markoff. The iPad in your hand: As fast as a supercomputer of
yore. New York Times article based on interview with Dr. Jack Don-
garra, May 9, 2011 2011. http://bits.blogs.nytimes.com/2011/05/09/

the-ipad-in-your-hand-as-fast-as-a-supercomputer-of-yore.
46. A. Mayr, R. Plösch, and M. Saft. Objective safety compliance checks for source

code. In Companion Proceedings of the 36th International Conference on Software
Engineering, ICSE Companion 2014, 2014.

47. J.C. McCallum. Memory prices (1957-2015). http://www.jcmit.com/

memoryprice.htm, Accessed: 03/2016.
48. D. McCandless. Information is beautiful: Million lines of code. http://www.

informationisbeautiful.net/visualizations/million-lines-of-code.

http://www.visualcomplexity.com/vc
http://bits.blogs.nytimes.com/2011/05/09/the-ipad-in-your-hand-as-fast-as-a-supercomputer-of-yore
http://bits.blogs.nytimes.com/2011/05/09/the-ipad-in-your-hand-as-fast-as-a-supercomputer-of-yore
http://www.jcmit.com/memoryprice.htm
http://www.jcmit.com/memoryprice.htm
http://www.informationisbeautiful.net/visualizations/million-lines-of-code
http://www.informationisbeautiful.net/visualizations/million-lines-of-code

49. A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson. Unifying execution of
imperative and declarative code. In International Conference on Software Engi-
neering (ICSE’11), 2011.

50. D. Monroe. When data is not enough. Communications of the ACM, 58(12):12–14,
2015.

51. L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska,
S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan, E. Stephan, and J. van den
Bussche. The Open Provenance Model Core Specification (v1.1). Future Genera-
tion Computer Systems, 27(6):743–756, June 2011.

52. P. Mosses. Sis: A compiler-generator system using denotational semantics. Tech-
nical Report 78-4-3, Dept. of Computer Science, University of Aarhus, 1978.

53. P. Muller, F. Fleurey, and J. Jézéquel. Weaving executability into object-oriented
meta-languages. In ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems (MODELS’05), 2005.

54. D.P. Mulligan, S. Owens, K.E. Gray, T. Ridge, and P. Sewell. Lem: Reusable
engineering of real-world semantics. SIGPLAN Not., 49(9):175–188, August 2014.

55. S. Nair, J. de la Vara, A. Melzi, G. Tagliaferri, L. de la Beaujardiere, and F. Bel-
monte. Safety evidence traceability: Problem analysis and model. In Requirements
Engineering: Foundation for Software Quality, 2014.

56. The President of the United States. Executive order: Creating
a national strategic computing initiative. July 29, 2015. Avail-
able at: https://www.whitehouse.gov/the-press-office/2015/07/29/

executive-order-creating-national-strategic-computing-initiative.
57. D. Park, A. Ştefănescu, and G. Roşu. KJS: A complete formal semantics of

JavaScript. In SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI’15), pages 346–356. ACM, June 2015.

58. S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental symbolic
execution. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’11), 2011.

59. E. Posse. PapyrusRT: modelling and code generation (invited presentation). In
Workshop on Open Source Software for Model Driven Engineering (OSS4MDE’15),
2015.

60. X. Ren, F. Shah, F. Tip, B.G. Ryder, and O. Chesley. Chianti: A tool for change
impact analysis of Java programs. In ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA’04), 2004.

61. F. Riguzzi. A survey of software metrics. Technical Report DEIS-LIA-96-010,
Università degli Studi di Bologna, 1996.

62. G. Roşu and T.F. Şerbănuţă. An overview of the K semantic framework. Journal
of Logic and Algebraic Programming, 79(6):397–434, 2010.

63. RTI. The economic impacts of inadequate infrastructure for software testing. Tech-
nical Report Planning Report 02-3, National Institute of Standards & Technology
(NIST), May 2002.

64. R. Schuwer, M. van Genuchten, and L. Hatton. On the impact of being open.
IEEE Software, 32:81 – 83, 2015.

65. B. Selic. What will it take? A view on adoption of model-based methods. Software
and System Modeling, 11:513–526, 2012.

66. G.M.K. Selim, L. Lucio, J.R. Cordy, J. Dingel, and B.J. Oakes. Specification
and verification of graph-based model transformation properties. In International
Conference on Graph Transformation (ICGT’14), pages 113–129, 2014.

67. S. Shapiro. Splitting the difference: The historical necessity of synthesis in software
engineering. IEEE Annals of the History of Computing, 19(1), 1997.

https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative
https://www.whitehouse.gov/the-press-office/2015/07/29/executive-order-creating-national-strategic-computing-initiative

68. R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback generation for
introductory programming assignments. In ACM SIGPLAN Notices, volume 48,
pages 15–26. ACM, 2013.

69. A. Solar-Lezama, C. Jones, and R. Bodik. Sketching concurrent data structures.
In ACM SIGPLAN Notices, volume 43, pages 136–148. ACM, 2008.

70. A. Solar-Lezama, R. Rabbah, R. Bod́ık, and K. Ebcioğlu. Programming by sketch-
ing for bit-streaming programs. In ACM SIGPLAN Notices, volume 40, pages
281–294. ACM, 2005.

71. B. Stanley and K. Gyimesi. Automotive 2025 – industry without borders. Tech-
nical report, IBM Institute for Business Value, January 2015. http://www-
935.ibm.com/services/us/gbs/thoughtleadership/auto2025.

72. I. Stoica, R. Morris, D. Karger, F.M. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In ACM Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM’01), pages 149–160, 2001.

73. J.A. Tainter. Complexity, problem solving, and sustainable societies. In
R. Costanza, O. Segura, and J. Martinez-Alier, editors, Getting Down to Earth:
Practical Applications of Ecological Economics. Island Press, 1996.

74. E. Torlak and R. Bodik. Growing solver-aided languages with Rosette. In ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming & Software, Onward! 2013, pages 135–152, 2013.

75. E. Torlak and R. Bodik. A lightweight symbolic virtual machine for solver-aided
host languages. In ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI’14), 2014.

76. E. Tufte. Beautiful Evidence. Graphics Press, 2006.
77. M. van den Brand, A. van Deursen, J. Heering, H. de Jong, M. de Jonge, T. Kuipers,

P. Klint, L. Moonen, P. Oliver, J. Scheerder, J. Vinju, E. Visser, and J. Visser. The
ASF+SDF meta-environment: A component-based language development environ-
ment. In International Conference on Compiler Construction (CC’01), volume
LNCS 2027, 2001.

78. W3C Working Group. PROV-Overview: An overview of the PROV family of
documents. In P. Groth and L. Moreau, editors, W3C Working Group Note. W3C,
2013.

79. D. Ward. Avsis system architecture virtual integration program: Proof of concept
demonstrations. INCOSE MBSE Workshop, January 27 2013.

80. J. Whittle, J. Hutchinson, M. Rouncefield, and R. Heldal. Industrial adoption
of model-driven engineering: Are the tools really the problem? In ACM/IEEE
International Conference on Model-Driven Engineering Languages and Systems
(MODELS’13), 2013.

81. G. Yang, M. Dwyer, and G. Rothermel. Regression model checking. In Inter-
national Conference on Software Maintenance (ICSM’09), pages 115–124. IEEE,
2009.

82. P. Zave. Using lightweight modeling to understand Chord. ACM SIGCOMM
Computer Communication Review, 42(2):50–57, April 2012.

83. K. Zurowska and J. Dingel. BM-FA 2009 – 2014: Revised Selected Papers, chapter
A Customizable Execution Engine for Models of Embedded Systems, pages 82–110.
Springer, 2014.

	Complexity is the Only Constant: Trends in Computing and Their Relevance to Model Driven Engineering

