Technical Briefing:
Modeling and Code Generation for
Real-Time Systems using UML-RT and
Papyrus-RT

Iz _.)
8 -
uebee City & f: ;‘".‘%._5“"“"3" ® Hallfax i : -l i '. . [
i i el i ’ ql | \
e P Hanile | ’I = st §
. wsaultste Marie e "'}.r'-,:}'.. l| 1 4 ‘ A
y Kingston @’ “‘.\ el ! : = !
AN, el . . E— - b
; T eocheser L G lsan - - =
PR et i Alain Beaulieu (RMC) WA ”
oy 1 = ",;.' AT e |
L 1< “M 1 - ’ v

Juergen Dingel (Queen’s)
Nicolas Hili (Queen’s)

F ™ -~
|"w .
-)
: -

ICSE
May 23, 2017

All material available at
http://flux.cs.queensu.ca/mase/research/tutorials/icse17-technical-briefing/

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

49 Years Ago at 15t NATO SW Eng Conference

/HW computing power 1}

— Complexity of tasks SW asked to do 1}

= Complexity of SW {}

= Existing SW development capabilities strained

— “Software crisis”

\

/

TB at ICSE, May 23, 2017

BIDE w/ UML-RT and Papyrus-RT

SOFTWARE ENGINEERING

| E COMMITTEE

Since Then: LOTS of Progress

= Hardware
e Computing power (2016 vs 1969) [Paul Ledak on quora.com]:

° Number of transistors:
~ iPhone 6 = Apollo 11 GC x 180,000

° Clock frequency:

iPhone 6 = Apollo 11 GC x 32,000

° Instructions per second:
~ iPhone 6 = Apollo 11 GC x g0 million

° Overall:
~ iPhone 6 = Apollo 11 GC x 120 million
e Cost of 1 MB of memory in USS [www.jcmit.com]:
° Dec 2015 = 1957/ 100 billion

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 3

" Software engineering Sjnce Then: LOTS of Progress

e |nformation hiding via modularization, encapsulation, interfaces, MDE, ...

= Pro(.
| Key general techniques:

* Dat|_ Abstraction, automation, and analysis

e Relational model|, ...

= Operating systems

e Virtual memory, ...

40 years ago

:' - AE L . 8
, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

Model-Driven Engineering (MDE)

" |mprove productivity, quality, and ability to handle
complexity by
" increasing level of abstraction
e through use of ‘models’

= Jeveraging automation
e e.g., via code generation from models, model transformation, ...
" improving analysis capabilities

e e.g., through constraint solving, simulation, state space exploration, ...

MDE = Abstraction + Automation + Analysis

" |nspired by use of models in engineering and science

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 5

Abstraction, Automation, and Analysis in
Manufacturing

= Mechanical design till early 1970ties: paper drawings, ...

= Mechanical design from about 1972: CAD/CAM

1. Create drawings w/ computer (CAD)
2. Computer automatically generates milling/CNC programs (CAM)

2
0223
ouza

zd| S

.zl =

& s ?

4 =< >
) 7] S—
()) azse

= much better analysis capabilities and productivity

= abstraction, automation, and analysis have revolutionized
manufacturing

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 6

MDE Process

Elements in
solution space exist
in same medium:
the computer

= Model can
evolve into system
it is modeling!

= fewer
discontinuities

TB at ICSE, May 23, 2017

Problem space

eine g : Requirements,

refine ! l
lal @ : Requirements,

refine

e @Requirementsm

MDE w/ UML-RT and Papyrus-

Solution space

refine 7M0d9|1 § analyze

refine

MOdElz 9analyze
refine

N analyze
Modeln§ Y
generate

Code

T 7

MDE for Embedded Systems: Context

= Some vendors
e Mathworks: Stateflow/Simulink
e |BM: Rational RoseRT, Rational Rhapsody, RSA-RTE
e National Instruments: LabVIEW
e Esterel Technologies: SCADE
e |AR Systems: IAR Visual State

= Some standards
e DO-178C, DO-331

[Radio Technical Commission for Aeronautics (RTCA). DO-178C: Software Considerations in Airborne Systems
and Equipment Certification. Jan 2012] [https://en.wikipedia.org/wiki/D0O-178C]

[Radio Technical Commission for Aeronautics (RTCA). DO-331 "Model-Based Development and Verification
Supplement to DO-178C and DO-278A]

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 8

Even the Game Industry is Using MDE Now

[http://docs.unity3d.com/Manual/Animator.html]

L] Wgikn sly - ALl makar - B Wac b uree Zaveore ilacat owd «Opmely 4

> " w»

» -
—
p "’: -
& S8 - B
; _'“,\.

o, O e
S gl o S

Screenshot courtesy Nick Graham

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 2

MDE: Challenges, Opportunities

= Challenges [1],[2]
e Technical: user experience, model analysis, ...

e Social: education/training, ...

= QOpportunities

e Emerging eco-system: open source,
standards, forums, repositories, ...

Security
. . f
e Abstraction, automation, and ey —
. . . More ; ;
analysis will continue to be key [3] inegration O
70 ECUs
. . ,) _ , s Current best
[1] Selic. What will it take? A view on adoption of model-based methods in practice. 100 million LOCs

practices

Software and Systems Modeling (SoSyM) 11(4):513-526. October 2012. N)
electronics & software:

[2] Whittle, Hutchinson, Rouncefield. The state of practice in model-driven \ - 90% of innovations
engineering. IEEE Software 31 (3), 79-85. 2014. 1 - 40% of costs’
[3] Dingel. Complexity is the Only Constant: Trends in Computing and their '@_‘w =0

Relevance to Model Driven Engineering. Proceedings ICGT'16. LNCS e

9761:79-85. 2016.

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 10

Goal of TB

Inform
e |ntro to MD with UML-RT and Papyrus-RT
e Pointers to resources, related work, etc
Inspire

e We need more abstraction, automation, analysis!
e UML-RT

o

small, cohesive set of concepts

“UML-RT has features which appeal to the formalist, but some are severely
underused by practioners. The primary reason is undoubtedly that there is
nothing within the Rose RealTime toolset that can take advantage of the extra
information, relegating it instead to a documentary role” [4]

o

successful track record, but work needed on, e.g.,

~ static analysis, user experience, deployment, interpretation, testing,
verification, simulation, ...
[4] Whittaker, Goldsmith, Macolini, Teitelbaum, "Model Checking UML-RT Protocols", Proc. Workshop Formal Design Techniques
for Real-Time UML, 2000-Nowv.

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 11

(10 mins)

Overview

(10 slides)

o o o o o e e o m e e o e e e mm m e m mm e e mm mm e e m e e R m m e e e e e

e e o o o mm m mm mmm e mEm mEm mmm R REm MEm M Rmm Rmm Mmm Mmm R Mmm Mmm M Rmm Mmm Mmm M Mmm Mmm Mmm S Mmm Mmm Mmm M Mmm Mmm Mmm M Mmm Mmm Mmm S Mmm Mmm M M Mmm mmm M e mm

8.

9. Conclusion
All material available at

Papyrus-RT
UML-RT: Part |

e (Core concepts

Demo |

Hands on session
UML-RT: Part I

More advanced concepts

Demo I

(25 mins)

(10 mins)
(10 mins)

(15 mins)

(10 mins)

(5 min)

(3 slides)

(24 slides)

(14 slides)

(3 slides)

http://flux.cs.queensu.ca/mase/research/tutorials/icsel7-technical-briefing/

TB at ICSE, May 23, 2017

MDE w/ UML-RT and Papyrus-RT

12

PARPYRUS
REAL TIME

= Papyrus for Real-Time industrial-grade, complete modeling
environment for the development of complex, software
intensive, real-time, embedded, cyber-physical systems.

Papyrus-RT: Overview @

= Part of PolarSys

e Eclipse Working Group a&m

e Open source for embedded systems gass PoLARSYsS
/|

A | Open Source Solutions for Embedded Systems

= Building on
e Eclipse Modeling Framework (EMF), Xtext, Papyrus

= History
e 2015:V0.7.0
e March 2017:v0.9 fll
e Fall 2017:v1.0 [https://wiki.eclipse.org/Papyrus-RT]

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 13

Papyrus-RT: Installation

Easiest: as RCP

From web:
e [https://eclipse.org/papyrus-rt/content/download.php]

e Download RCP for your platform

e Extract downloaded file into a folder of your choice

From USB stick:

e |n ‘Papyrus-RT folder:

° Archive: Copy/paste, unpack
e In ‘Models’ folder:

° Models: Import in Papyrus-RT
e In ‘Doc’ folder:

° Installation instructions

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

14

Papyrus-RT: Use

= Tutorials
e [https://wiki.eclipse.org/Papyrus-RT/User#Tutorials]
) N Modeling
. P d
parts el Environment
1. Editing, building the model, generate code ~ % generates
2. Compiling and running generated code - code for
R Runtime

° Linux: easy

- [https://wiki.eclipse.org/Papyrus- System (RTS)

RT/User/User Guide/Getting Started#Execute the model]

o

macOS: use VirtualBox/Vagrant

° Windows: use Cygwin, or VirtualBox/Vagrant
- [https://wiki.eclipse.org/Papyrus-RT/User Guide/Vagrant Setup]

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 15

Modeling Modelica Examples in

e Physical systems

Languages e Equation-based Domqi_n-
Specific
Simulink Modeling

e Continuous control, DSP

e time-triggered dataflow

Steven Kelly

Stateflow
* Reactive systems [Kelly, Tolvanen 2008]

¢ Discrete control

AADL e State-machine-based
e Embedded, real-time Lustre/SCADE —
e Embedded real-time i it
UML e Synchronous dataflow

UML MARTE

e Embedded, real-time

UML-RT
e Embedded, real-time
State-machine-bas

Wats Helarster, Eonaet Hato, el Visses B
[Voelter 2013]
increasing

domain-specifity

16

increasing

generality

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

UML-RT: History

Real-time OO Modeling (ROOM)
e ObjecTime, early 1990 ties

Major influence on UML 2 REAL-TIME
OBJECT-ORIENTED
e E.g., StructuredClassifier MODELING
“RT subset of UML”
Tools

e ObjecTime Developer
e |BM Rational RoseRT

e |IBM RSA-RTE [Selic, Gullekson, Ward.
. Real-Time Object-Oriented
e Eclipse Papyrus-RT Modellng. Wiley. 1994]

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 17

UML-RT: Characteristics

Domain-specific] ﬂ nputs ﬂ;ﬁ | il
e Embedded systems with soft real-
time constraints Real-time System
Graphical, but textual syntax exists e actors
Small, cohesive set of concepts e state
Strong encapsulation u outputs =
e Actors (active objects) f(state,inputs)
e Explicit interfaces in1 in2
e Message-based communication 'nl ﬂ inputs ﬂ'”z
Event-driven execution in1/outl
e State machines @
in2/out2

out2
outl
out2

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 18

UML-RT Part |

= Core concepts

o m mm m e Em Em Em Em E

e Behavioural modeling

TB at ICSE, May 23, 2017

MDE w/ UML-RT and Papyrus-RT

19

UML-RT: Core Concepts (1)

" Types = Behaviour
e Capsules (active classes) e Messages (events)
° Capsule instances (parts) e State machines
e Passive classes (data classes) = Grouping
" Objects e Package
e Protocols

. : :
e Enumerations Relationship

e Generalization
= Structure

. e Associations
e Attributes

e Ports

e Connectors

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 20

UML-RT:

=" Top

Core Concepts (2) L

{L ponger: Ponger

pinger: Pinger
"= Model

pingPort: PingPongProtocal

pengPort: PingPongProtocal

e Collection of capsule definitions

e ‘Top’ capsule containing collection of capsule
instances (parts)

= Capsules

e May contain

o

Attributes, ports, or other capsule instances (parts)
e Behaviour defined by state machine
= Ports

e Typed over protocol defining input and output
messages

= State machine

e Transition triggered by incoming messages

e Action code can contain send statements that
send messages over certain ports

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

== «Protocols PingPongProtocol
Z* gut ping ()
*Z in pong ()

pinger:Pinger

ponger:Ponger

ping >
> pong
pIng >
e pong
ping >
< pong
and so on

pinger:Pinger

ponger:Ponger

21

Capsules (1)

= Kind of active class

e Attributes, operations = Top

° Own; independent ﬂOW pinger: F'inger--L J] ponger: F'-:unger--
of control (logical thread)

pingPort: PingPongProtocol pongPort: PingPongProtocel
= May also contain

e Ports over which messages can be sent and

received 2 <CapsulesTop
e Parts (instances of other capsules) and connectors S «CapsulePart= pinger : Pinger
=1 «CapsulePart= ponger: Ponger
= Creation, use of instances tightly controlled o <RTConnector= RTConnectorl
e Created by runtime system (RTS)
e Cannot be passed around 4 |la* =Capsule= Ponger
0 «RTPort» pongPort: PingPongProtocol
e Stored in attribute of another capsule (part) 0 «RTPorts log: Log
e [nformation flow only via messages sent to ports
= better concurrency control and encapsulation -* «Capsule» Pinger
] O «=RTPort» pingPort : PingPongProtocol
= Behaviour defined by state machine o0 «RTPorts log : Log
. [* «RT5tateMachines <5State Machinex

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 22

enter

Example: Capsules
and Capsule Parts

- |- - - # g% «Lapsules Stage |

% Model Explorer 52 | i= B @& % =) (5]

4 B2 RootElement

«" «Capsules Parcer_Router
=" =Capsulex Gen

=" =lCapsulex Bin

=" «Capsules Sensor

=" «Capsules Chute

<" «Capsules Switcher
——————————— a

=] «CapsulePart» chutel : Chute
=] «CapsulePart» chute : Chute
= «=CapsulePart= sensor: Sensor
= «CapsulePart= switcher: Switcher

switchProtocol

swifchProtocol - ight

~chutel
__Chute2
_|__switcher -
|
) |
Bin I
|
i- e
| |l Stage |
[E——
; log
] sensor: Sensor
detection
enter .
]—[chutel: Chute detection chute: Chute

enter
exit

detection
switcher: Switcher

exit
enter left

right

Passive Classes/Data Classes

= Similar to regular classes
= Do not have independent flow of control

= Behaviour defined through operations

Used to define data structures and operations on them

B Model Explorer &3 O

@R ell v
4 2 RootElement

 la® «lCapsule= Parcer_Router

™ «Capsule» Gen

 lat «lCapsules Bin

- la® «Capsule= Stage

» la® «Capsules Chute

™ «Capsules Switcher

4 | = =PassiveClassPropertiess Parcel
[Ci number: Integer
4 =] level: Integer
0 2

\ g stage: Integer y,

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

Protocols

Provide types for ports

Define
* |nput messages
° Services provided by capsule owning port

e Qutput messages

° Services required by capsule owning port

e Input/output messages

Messages can carry data

== «Protocol» PingPongProtocol
¢ out ping (]
+Z in pong (]

== «Protocol= Protocoll
=+ put cutla ()
=+ out outlhb ()
+Z ininla ()
+Z ininlb ()

4 == gProtocols Transmission

]

. I u:uuttrans.l“ﬂit (p: Parcel] !

r=1

S Py 5etFrEE|! (free : Boolean) :

N
N

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 25

“Boundary objects” owned by capsule

Typed over a protocol P

Have ‘send’ operation

e portName.msg(argl,...

,argn).send()

Can be
e base (not conjugated) ¢ conj
° Direction of messages is o)
as declared in protocol
° Notation: 0
- textual: P
_ . 4 == «Protocols PingPongProtocol
graphical: W T out ping (
+Z in pong ()
4 W7 «CapsulesPinger __ _ _ ___ ____
base T T =< o «RTPorts pingPort: F'mgF'-:ungF'rn:utn:uccuI !
=* Pinger /) o «RTPort»Tog:Tog

/

N

pingPort: PingPongProtocel

TB at ICSE, May 23, 2017

. [* «BTStateMachines =5State Machine=

Pinger

4 |* «Capsules Popger. _ _ _ _ _ _ _ _ _ _ _
ll‘l =ATPort= pongPort : ~F'|ngF'|:|ngPr|:|t|:|cc|I

0 =RTPort= log: Log
. [» «RTS5tateMachines <5tate Machine»

Ponger MDE w/ UML-RT and Papyrus-RT

Ports

ugated

Direction of messages declared
in protocol is reversed
Notation

e textual: ~
e graphical: []

=" Ponger

T

II pengPort: PingPongProtocol
1
~ /
~

conjugated

26

= Connect two ports

Connectors

= Ports must be compatible

- Top

pinger: Pinger L

pingPort: PingPengProtocol

J] ponger: F'u:nnger-

poengPort: PingPongProtocal

e Both are instances of same protocol| | «Protecek PingPengProtocel

e Either (asymmetric)

o

~ typically owned by ‘client’

o

and the other is ‘conjugated’

~ typically owned by ‘server’

e Or (symmetric)

o

only InOut messages

I+ out ping ()

+Z In pong ()

pinger:Pinger

ponger:Fonger

ping

one is ‘base’ (i.e., not ‘conjugated’)

_ pong

Y

ping

. pong

Y

ping

Y

> pong

and so on

pinger:Pinger

ponger:Ponger

" Top

< Top

cl: C1 +

Portl: Protocoll

% c2: C2

Port2: Protocoll

slp: Protocoll

client: Chent

cpl: Protocoll cp2: Protocel2

s2p: Protocol2

TB at ICSE, May 23, 2017

MDE w/ UML-RT and Papyrus-RT

27

Ports: External, Internal, Relay

= External behaviour
e Provides (part of) externally visible functionality (isService=true)
* |ncoming messages passed on to state machine (isBehaviour=true)
e Must be connected (isWired=true)
" |nternal behaviour
e As above, but not externally visible (isService=false)
e Connect state machine with a capsule part
= Relay

e Pass external messages to and from capsule parts

=" Capsulel

rt5 3 la
portl .‘. po - 4 re y
— port3 c2: Capsule 2 e /
external J port2

internal / external or relay

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 28

Ports: System Application code

(generated or hand-written)

= Connects capsule to Runtime System (RTS) RTS Library
library via corresponding system protocol Target 0S
. . T t HW
» Provides access to RTS services such as L
r--- ® Timing: setting timers, time out message
° timer2Port.informIn(UMLRTTimespec(10, 0));
Il set timer that will expire in 10 secs and 0 nano Secs

° When timer expires, ‘timeout " message will be sent over timer2Port

-- o Log: sending text to console
° logPort.log(“Ready to self-destruct”)

e Frame: incarnate, destroy capsule instances

=" Capsulel
[Iu:ugF'u:urt__|_ - = \
orts
portl .‘. I F portd
port3 c2: CapsuleE
. port?
tlmerlF'u:urt I \t|mer2F'|:|rt,

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 29

Example: PingPong

=" Top

pinger: Pinger ponger: Ponger

pingPort: PingPongProtocol pongPort: PingPongProtocel

== «Protocol= PingPongProtocol
Z* put ping (]

=" Pinger

; log: Log

+Z In pong ()
T -t F'.cnr'lger i
) !
.—F I:P_. ; log: Log

TB at ICSE, May 23, 2017

pingPeort: PingPongProtocol pongPort: PingPongProtocal

MDE w/ UML-RT and Papyrus-RT

30

Example: Rover

=T Top
timer controlSoftware: ControlSoftware engine engine rover: Rowver
log
detection detection

zProtocol= Engine

out moveForward () EE

out moveBackwards ()

out turnLeft (angle : Integer) engine

out turnRight (angle : Integer)

F1 B P B Bl k) B

out stop
+Z in turnedLeft ()
+Z in turnedRight ()
+IZ in stopped ()

zProtocols Detection

I+ put startDetection ()

¢ put stopDetection ()

. +Z in obstacleDetected (distance : Real)

TB at ICSE, May 23, 2017

[

detection

[

]

engineController: EngineController
engine

log
tirner
detection

detectionSensor DetectionSensar

detectionSensor2: DetectionSensor

BT E le: D
- xample: Door
=" | lockPort [4] . - L k S t
centralLock: Centrallock deorl: Door oc s e m
lockPa
- = Door
doord; Door
lockPort
: " lock: Lock
doord: Door lockPort
doord: Door
- Lock

=" Centrallock

4 [~ «Protocol- Locking

; .+ out lockStatus (locked : Boolean)
startupTimer in leck () . J

._E;“ lockPort

ol

in unlock ()

lockPort [4]

4 | o® «Capsule, CapsulePropertiess Centrallock

O «RTPorts lockPert : ~Locking [4..4]
O «RTPort= startupTimer : Timing

- = tmplnt: Integer

- & locksCount : Integer

. [* centrallockSM
Bo Centrallock
%3 Diagram centralLockSM

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

= (Core concepts

UML-RT Part |

e Structural modeling

m m o o o o e o o

TB at ICSE, May 23, 2017

MDE w/ UML-RT and Papyrus-RT

33

State Machines

States

e Capture relevant aspects of history of
object

e Determine how object can respond to
incoming messages

e May have invariants associated with them
Pseudo states

e Don’t belong to description of lifetime of
object

= object cannot be ‘in’ a pseudo state

e Helper constructs to define complex state
changes

Transitions

e Describe how object can move from one
state to next in response to message input

TB at ICSE, May 23, 2017 MDE w/ UML: L

VendingMachine

toklerone

kitkat

Got2Daollars

insertDollarl

insertDollard

AdaptiveCruiseControl

. Steady=

Decelerats

)

checks
checkD

|

yesToolClose

checks Q

>t|:n:|CI|:|5E?

notTooClose

notTooFar

Jl

Accelerats

yesTooFar tooFar?

States and Pseudo States

States

(o]

Basic

° Composite (in hierarchical state machines)

e May contain

(o]

(o]

Pseudo states
e |nitial
_*__choice point _
e history
e entry points

e exit point

in composite
states only
TB at ICSE, May 23, 2017

Entry action (written in action language)

Exit action (written in action language) I [

initial |

state

point

-
-
—
-
—
—
-
—
-
-
. -—
.
In S' —
. —
—
—
. —
-
—
-
-
-
-
e
—
-
—
—
-
-
-
- -

Statel

———————— [a'entr}r OpaqueBehavior setlp

~,

"y

MDE w/ UML-RT and Papyrus-RT

35

State3 N
Jexit OpagqueBehavicr tearDown
/
initial transition
[| Stated R
I
|
I
T Compute
]
Done? t
= exi
entry B ;Lo point
I
. ! ' y,
- I - -
history choice point

= Kinds:

e Basic

Transitions

e Group (in hierarchical state machines)

= Consists of
e Triggers

° Transitions out of pseudo states (initial, choice) don’t have triggers

° Transitions out of non-pseudo state should have at least one trigger

e Guards (optional, written in action language)

o Effect/Actions (optional, written in action language)

sl

Trigger

Specifies port
and message

TB at ICSE, May 23, 2017

t[gl/a
' > s2
Guard Effect/Actions
Boolean condition Code that is executed when
that must hold transition is taken
MDE w/ UML-RT and Papyrus-RT 36

Action Language

" Language used in
e guards to express Boolean expressions
e entry action, exit action, transition effects to read and update
attribute values, send messages

= Typically: C/C++, Java

—>- State machines are a hybrid notation combining

o

graphical notation for state machines and

o

textual notation for source code in actions

= UML and UML-RT State Machines

° different from, e.g., Finite Automata

o

closer to ‘extended hierarchical communicating state machines’ [5]

[5] R. Alur. Formal Analysis of Hierarchical State Machines. Verification: Theory and Practice. 2003.

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

37

Example: Action Code, Timers, Logging

. TrafficLightStateMachine
RED GREEM YELLOW
e Jentry Jentry .
Jentry & : OpaqueBehavior OpagqueBehavior
I | OpagueBehavior [imeou cetTimer timeout setTimer
I setTimer I
P [——
| .
timeout
.

timer.infermIn(UMLETTimespec(5,0));
log.log("Switched to red");

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

v

Olde)

NININ

C

§ . /TopMain.exe
'Cl_lrltr"l_l Ter "DefaultCon

Example: Ping Pong [SSSiasam.

== «Protocol= PingPongProtocol Ponger: ready

Z+ out ping [} Ponger: received ping
*Z inpong () Ponger: sending pong
Pinger: received pong
3 Top Pinger: sen ‘I'ir'|r| ping
= Ponger: received ping
Ponger: s |r| pong
_ o =T -7 Pinger red pong
pinger: Pinger J] ponger: Ponger Pinger: ‘|'| ng ping
F'n:nr‘uger": ceived ping
pingPort: PingPongProtocal pengPert: FingPongPretocol Ponger: sends ng pong
F"ir'uger": ceived pong
Pinger: ‘I ing ping
leg.log("Pinger: recerved pong"); : :
Ing.lngg"F‘inger: sending |;:F:Iir1gﬁljl;:lr -- = IDQ'IDQ(:PDHQEH rECEI\.'rEd |;:||r'|g':;l;
pingPort.ping().send(); : :' - leg.leog("Penger: sending pong”);
| . | pengPort.pong().send();
1 I
| I
| _
pong/.. |
‘ Playing]7 Playing
(PR 'T_ !
i L
g ==) \ J
r- '
1 1
log.log("Pinger: ready"); leg.log("Penger: ready”);

loeg.leg("Pinger: sending ping");
pingPart.ping().send();

MDE w/ UML-RT and Papyrus-RT 39

Example: Timers

legger.logl"Processing request”);
/{ compute output
p.response(output).send();

c:Client

s:5ernver

ServerstateMachine

set timer to MAX

P

.
| \
reques’.. |

- - -

o Initial [— — Waiting _ _)
Jentry OpaqueBehaviol
setTimer ! timeouty... Error

loop / [n<MaAx]

request(input:inputData)

¢, Waiting 2

n seconds later

>
_ responseloutput:QutputData) H

-

set timer

<

logger.log("Too late!");

legger.loglsetting timer");
timer.informIn(UMLRT Timespec{MAX, 0));

request(input:inputData)

more than MAX seconds later

-

¢ Error 2

c:Client

s.5enver

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 40

(10 mins)
(1 min)
(5 mins)

(25 mins)

Overview

(10 slides)
(1 slide)
(3 slides)

(24 slides)

o o w m — m— m m e me mn mm M M S M e M M M e M M M M Mmm M M e M M M e M M M e Rmm M M e Mmm M M e Mmm M e e Rmm e e e e e

e mm mm Em Ee e e O O EE S S S S S EEE EEE EEE EEE BN BN SEE SEE EEE EEE BEE BEE BN BN MmN SEE MEE BEE BEE BEN BN BN SEE MmN MEE MEE BEn BEE B B SEn MEm MEm MEm M M B M e e e s

1. MDE

2. Overview

3. Papyrus-RT

4. UML-RT: Part |
e (Core concepts

55 Demo |

6. Hands on session

7. UML-RT: Part Il

e More advanced concepts
8. Demo ll

9. Conclusion
All material available at

(10 mins)

(15 mins)

(10 mins)

(5 min)

(14 slides)

(3 slides)

http://flux.cs.queensu.ca/mase/research/tutorials/icsel7-technical-briefing/

TB at ICSE, May 23, 2017

MDE w/ UML-RT and Papyrus-RT

41

Demo and Handson

== «Protocol= PingPongProtocol
2 out ping ()

+Z inpong ()

Example: Ping Pong

«* Top

pinger: Pinger L

pingPort: PingPongProtocol pongPort: PingPongProtocal

J] ponger: Ponger

log.log("Pinger: received pong”);
log.log("Pinger: sending ping™);
pingPort.ping().send();

log.log("Ponger: received ping");
r - leg.log("Ponger: sending pong”);
pongPort.pong().send();

T
LF...

Playing

h

s
I
]

——

T
1

leg.log("Pinger: ready");
log.log("Pinger: sending ping");
pingPort.ping().send();

leg.log("Ponger: ready”);

MDE w/ UML-RT and Papyrus-RT 37

TB at ICSE, May 23, 2017

MDE w/ UML-RT and Papyrus-RT

42

1. MDE

2. Overview

3. Papyrus-RT

4. UML-RT: Part |

e (Core concepts

Demo |

5
6. Hands on session

(10 mins)
(1 min)
(5 mins)

(25 mins)

(10 mins)

(10 mins)

Overview

(10 slides)
(1 slide)
(3 slides)

(24 slides)

o D m— m e e e e M e M M M e M M M e M M M M Mmm M M e M M M e M M M e Mmm M M e Mmm M M e Mmm M e e Mmm e e e e e

e o o o o S S S M e e EEE EEE EEE EEE B BN SEE MmN EEE MmN EEE BEE B BN MmN SEE EEE MEE MEn BEN BN BN MmN SEE MEm MEE SEn MEN S S SEm SEm MEm MEm MEm SEm S B e e e s

e More advanced concepts

8. Demo ll

9. Conclusion
All material available at

(10 mins)

(5 min)

(3 slides)

http://flux.cs.queensu.ca/mase/research/tutorials/icsel7-technical-briefing/

TB at ICSE, May 23, 2017

MDE w/ UML-RT and Papyrus-RT

43

UML-RT Part Il

More on ports

More on state machines

TB at ICSE, May 23, 2017

MDE w/ UML-RT and Papyrus-RT

44

Ports: SPP and SAP

= So far, only wired ports

e Connected automatically when instances are created

=" Unwired ports

e Connected at run-time
e Publish/subscribe

° Port on publisher: Service Provision Point (SPP) -=--c-ccoooooo-- ,
° Port on subscriber: Service Access Point (SAP)

° Register with RTS using unique service name (manually or automatic)

4 == «Protocol: Observation =" Top

. I+ gut event (data : Event)

4 | g* =Capsule, CapsulePropertiess Observer -
trafficLight: TrafficLight

0 «RTPorts observation : ~Observation [20..20]

— ! ; observer: Obzerver
<o —o— = L.

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyri

State Configuration

= States can be active: flow of control resides at state

= |f a substate is active, its containing superstate is, too

= State configuration: list of active states

= Stable state configuration: no pseudo states and ends in basic state

= Example: <‘play’, ‘player1Move’, ‘waitForHand’>

CardGameSM \]I i playerlMove

p
play

Initial

start? t _ _ -

= deal = Mayerl Move

=)
/

noWinner t2
/A\{ f’ player2Move]
donel N 13 \
hasWinner?

)I IVIDE W/ UIVIL-R| and Papyrus-Ki

Transition

Machine in stable state configuration

Message m1 has arrived and is dispatched Execution
If dispatching enables no transition, m1 is _* TrafficLight
‘dropped’

StateMachine

If dispatching enables transition t,
e source state of t active,
e message matches trigger of t, and

Green

e guard evaluates to ‘true’ S

then transition t executed

a. execute exit action of source state of t (if any)

b. execute action code of t (if any) W—

c. execute entry code of target state of t (if any) L

If target of t is pseudo state .

a. continue by choosing and executing outgoing E
transition (i.e., goto 5.) —) Port

..m5 M4 m3 m2 ml

Machine in stable state configuration ‘ ‘ Q& ‘Q&

drop drop fire drop fire
TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

Run-to-Completion

"= The event processing of state machines follows ‘run-to-
completion’ semantics

= Dispatching of message triggers execution of possibly
entire chain of transitions (Steps 5 and 6 on previous slide)

= Execution lasts until stable state configuration has been
reached (last state in transition chain not a pseudo state)

= During transition execution, no other message will be
dispatched

= better concurrency control

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 48

Source state is composite Group Transitions

Example:

e Start configuration <‘play’,’player2Move’>
e Execute transition ‘reset’:

exit code ‘player2Move’, exit code ‘play’, effect ‘reset’, entry code ‘idle’

e End configuration <‘idle’>

CardGamesM A

play
start2 ol
reset /|
noWinner

I
; |
lﬂﬁ: playerZMove I
I

I
2t hasWinner? = !

History

= Re-establish full state configuration that was active when
containing state was active most recently

= Example: from <‘play’, s> to <‘play’, s> with ‘reset’ ‘resumel’

CardGameshd

_____ . play
I resume? !
@ nial :
start? al
Q u:IEiIJ)[pla}ferlhdn*.fe]
noWinner t2
e <>< (playerZMove
h,
donel hasWinner? B
L5 A %

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 50

Self Transitions

= Source and target states are the same
= 2 kinds: external, internal

= External: source state (and all substates) exited and target state entered

i |::I|H}f Ty
4 CardGamesha i ==
resurmed | i
[nitial
startd ol
. deal layerl Mowve
resumel _) Piay
reset JI'I
noWWinner
QQE.: { ::_ = | player2Move]
\ s trvd hazWinner? £
S == =+ getSeore |
5 L _.l 2 \ iy
@ getScore
UML-RT Mame getScore

UML Kind | external I MDE w/ UML-RT and Papyrus-RT 51

Self Transitions: Internal

= Source state (and all substates) remain active; no exit or
entry actions executed

d CardGameSh h
-
play
resumes
Iritial C }FG:}
start? al
resumel A ‘H_‘_|' deal '|
recet I_L—f—)
noWinner
|
|
)
: o playerMove
\ ”
"""" donel hasWinner? B
= o Y
¥ getScore
UML Mame getscore

o -

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

-t ar

" Door

- Example:

centrallock: Centrallock

lockPort [4]
lockPo

' "=t == 7| poorLock

doord; Door
i centrall ockSM)
StartingUp
T Tenty lockStatus WaitAllDoorsBeClosed \I II:”:h:gtatl-ls;--.. [return tmplnt==locksCount;]
| . JJ T e
Jentry OpaqueBehavior null

: timeout AllDoorsClosed?
B : doorsOpen doorsClosed

: :_a’entr}r GpaqueBehaviDl} |m— =g —m—m—————— 1

I _ getlockCommand ; I

I (I lockstatus | WaitAllDoorsBeOpened

1 I L _

I [return tmp!nt::lucksCDunt;] I_aentr}r OpaqueBehavior null lockStatus

I ! allDoorsOpen? I

| =1 ! -

LS | 1 1 lockSM
. 1 | | FiE
set timer : ! Initiall 'f”'t
11 ” I 11 ” I . UHIDCkEd
doors open”; doors locked”;
“hit key to lock” “hit key to open” s N uniockr...
oc
getChar(); getChar(); ~—==k twicelnlock
lockPort.lock().send() lockPort.unlock().send() === : lock/... |1
[-—=- locked unlock
“lock™+i+"locked”; : ﬂ
- — = unleck/...
lockPort.lockStatus(true).send N locke..
TB at ICSE, May 23, 2017 MDE w/ UML-RT and Pag twicelock

Example: Rock/Paper/Scissors

=t Top
/,—} i PlayerStateMachine
= play [2] /’__
referee: Referee Initial
player: Player [2]
: ickin
- observation [20] play P 4
= -
chzerver: Obsenver g0/
A
RefereeStateMachine 5‘> f ROUMD 2
7
ROUND 1 &
':5,: O ROUNDZ & NAITING FOR MEXT ROUND
o Jentry OpaqueBehavior
setting timer
can judge now? timeout
) ROUMD3
=3
[return abs(this-=firstPlayerScore - this-»secondPlayerScore) == 2;] o
Opag
) (JUDGIMG :
timeout Jentry OpagqueBehavior judge
L Jexit OpaqueBehavior reset
S
[GE‘I‘I’ING PLAYER. CHOICE]
picked/...
TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT L

Additional UML-RT Features

Structure
e QOptional capsules
e Inheritance
Behaviour

e Junction pseudo state
e Defer/recall
e Synchronous communication

e Message priorities

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

55

Additional Papyrus-RT Capabilities

= Generation of multi-threaded code
e Logical thread

° =flow of control for capsule instance
e Physical thread

° Executes RTS controller

~ Oversees execution of all capsules assigned to physical thread
e Generating single threaded code

° 1 physical thread executing one controller executing all capsules

e Generating multi threaded code

° Several physical threads each executing their own controller

= Graphical/textual hybrid modeling (prototype)

e Fully synchronized
" Legacy model import

= QObserver service
TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

56

Papyrus-RT: What’s Missing?

Model-level analysis
e Model execution/interpretation
e Debugging (ongoing)
e Testing (ongoing)
e Static analysis
Integration with external tools (ongoing)
e Animation, simulation (Unity)
Sequence diagram integration
Graphical/textual hybrid modeling (ongoing)
Action language (ongoing)
User experience

Deployment

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

57

Conclusion

" |ntroto
e MDE

° Abstraction, Automation, Analysis

° Core techniques to deal with complexity
e UML-RT

° small, proven subset of UML for real-time systems
e Papyrus-RT

o

open-source MDE tool w/ full code generation

" Lots of opportunity to use, research, contribute

= More questions?

e dingel@cs.queensu.ca

e hili@cs.queensu.ca

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT

58

Resources and References
= Links

e TB resources: http://flux.cs.queensu.ca/mase/research/tutorials/icse17-technical-briefing

e Papyrus-RT: https://eclipse.org/papyrus-rt

o

Installation, tutorial, etc: https://wiki.eclipse.org/Papyrus-RT/User

° Wiki: https://wiki.eclipse.org/Papyrus-RT

o

Forum: https://www.eclipse.org/forums/index.php/f/314/

e Papyrus: https://eclipse.org/papyrus/

o

Papyrus industrial Consortium: https://wiki.polarsys.org/Papyrus IC

e PolarSys: https://www.polarsys.org/

m References

[1] Selic. What will it take? A view on adoption of model-based methods in practice. Software and Systems Modeling (SoSyM)
11(4):513-526. October 2012.

[2] Whittle, Hutchinson, Rouncefield. The state of practice in model-driven engineering. IEEE Software 31 (3), 79-85. 2014.

[3] Dingel. Complexity is the Only Constant: Trends in Computing and Their Relevance to Model Driven Engineering.
Proceedings ICGT’16. LNCS 9761:79-85. 2016..

[4] Whittaker, Goldsmith, Macolini, Teitelbaum, "Model Checking UML-RT Protocols", Proc. Workshop Formal Design
Techniques for Real-Time UML, 2000-Nov.

[5] R. Alur. Formal Analysis of Hierarchical State Machines. Verification: Theory and Practice. 2003.

[6] Selic, “Using UML for modeling complex real-time systems,” in Workshop on Languages, Compilers, and Tools for Embedded
Systems (LCTES’98), 1998, pp. 250-260.

TB at ICSE, May 23, 2017 MDE w/ UML-RT and Papyrus-RT 59

TB at ICSE, May 23, 2017

The End

Micolas and Juergen You

:Thaﬂkynu .

: uestion
= q

" Answer

. Response

Micolas and Juergen You

MDE w/ UML-RT and Papyrus-RT

60

